Antiepileptic Drug Targets: An Update on Ion Channels
نویسندگان
چکیده
Different mechanisms of action have been proposed to explain the effects of antiepi‐ leptic drugs (AEDs) including modulation of voltage‐dependent sodium calcium and potassium channels, enhancement of γ‐aminobutyric acid (GABA)‐mediated neuronal inhibition, and reduction in glutamate‐mediated excitatory transmission. Recent advances in understanding the physiology of ion channels and genetics basis of epilepsies have given insight into various molecular targets for AEDs. Conventional AEDs predominantly target voltage‐ and ligand‐gated ion channels including the α subunits of voltage‐gated Na+ channels, T‐type, and α2‐δ subunits of the voltage‐gated Ca2+ channels, A‐ or M‐type voltage‐gated K+ channels, the γ‐aminobutyric acid (GABA) receptor channel complex, and ionotropic glutamatergic receptors. Molecular cloning of ion channel subunit proteins and studies in epilepsy models suggest additional targets including hyperpolarization‐activated cyclic nucleotide‐gated cation (HCN) channel subunits, responsible for hyperpolarization‐activated current (Ih), voltage‐gated chloride channels, and acid‐sensing ion channels. This chapter gives an update on voltage‐ and ligand‐gated ion channels, discussing their structures, functions, and relevance as potential targets for AEDs.
منابع مشابه
Newest Targets for Anticonvulsant Agents: An Overview
Epilepsy is a neurological condition characterized by recurrent seizures influencing about 1% of the worldwide population. Despite much progress in understanding the pathogenesis of epilepsy, the molecular basis of human epilepsy still remains unclear. Common approaches for pharmacotherapy of epilepsy are still directed towards controlling the symptoms and suppression of seizures. Clinical use ...
متن کاملAntiepileptic Drugs Targeting Cerebral Presynaptic Ion Channels Reduce Cerebral Excitability Decreasing Glutamate Release
Ion channel dysfunction has been implicated in several neurological diseases including epilepsy. Cerebral ion channels, and particularly presynaptic channels controlling neurotransmitter release, are among the most important targets of various antiepileptic drugs. In comparison with other parts of the neuron, in presynaptic nerve endings Na+ and Ca2+ channels controlling neurotransmitter releas...
متن کاملVOLTAGE-GATED ION CHANNELS Voltage-Gated Sodium Channels
Antiepileptic drugs (AEDs) protect against seizures through interactions with a variety of cellular targets. By affecting the functional activity of these targets, AEDs suppress abnormal hypersynchronous activity in brain circuits, leading to protection against seizures. The actions on these targets can be categorized into four broad groups: (i) modulation of voltage-gated ion channels, includi...
متن کاملEffect of Sodium Valproate on Ouabain-Induced Arrhythmia in Isolated Guinea-Pig Atria
Sodium valproate (SV), an antiepileptic drug has several mechanism of action. It inhibits voltage sensitive Na+ channels and reduces intracellular Na accumulation. These actions are similar to that of both phenytoin and carbamazepine. We have investigated the direct cardiac action of SV and its effects on ouabain-induced arrhythmia in isolated guinea-pig atria. The guinea-pig atrium was dissect...
متن کاملThe intrinsic severity hypothesis of pharmacoresistance to antiepileptic drugs.
Pharmacoresistance to antiepileptic drugs (AEDs) is a barrier to seizure freedom for many persons with epilepsy. For nearly two decades, pharmacoresistance has been framed in terms of factors affecting the access of AEDs to their molecular targets in the brain or the actions of the drugs on these targets. Shortcomings in this prevailing view led to the formulation of the intrinsic severity hypo...
متن کامل